Tachiki, M., Matsumoto, H. \& Umezawa, H. (1979). Phys. Rec. B, 20, 1915-1927.
takei, H., Shishido, T., Iwasaki, H. \& Muto, T. (1983). Jpn. J. Appl. Phys. 22, 1463.
Tanaka, M., Sekin, H. \& Nagasawa, T. (1983) Acta Cryst. A 39. 825-837.

Vandenberg, J. M. \& Matthias, B. T. (1977). Proc. Nall Acad. Sci. USA, 74, 1336-1337.
Woolf, L. D., Johnston, D. C., MacKay, H. B., McCallum, R. W. \& Maple, M. B. (1979). J. Low. Temp. Phys. 35. 651-669.

Yvon. K. \& Johnston, D. C. (1982). Acta Cryst. B38. 247-250.
Zachariasen. W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1984). C40, 1646-1647

Note on the Structure of $\mathrm{Ba}_{2} \mathbf{C a M o O}_{6}$

By N.-S. Chiu and S. H. Bauer
Department of Chemistry, Cornell University, Ithaca, New York 14853, USA

(Received 23 February 1984; accepted 5 June 1984)

Abstract

That the O atoms in $\mathrm{Ba}_{2} \mathrm{CaMoO}_{6}$ are sited at the corners of regular octahedra, centered at Mo atoms, is confirmed by comparing the near-edge shape of its Mo K-edge absorption spectrum with those of MoS_{2} and $\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{pq})_{2}(\mathrm{pq}=9,10$-phenanthrenequinone). The structure parameter of $\mathrm{Ba}_{2} \mathrm{CaMoO}_{6}$ was then directly determined from its EXAFS spectrum, calibrated by that of $\mathrm{K}_{2} \mathrm{MoO}_{4}$.

Introduction. To calibrate EXAFS spectra of a series of $\mathrm{Mo} / \mathrm{Co} / \mathrm{Al}_{2} \mathrm{O}_{3}$ supported catalysts (which are amorphous), we were fortunate in obtaining a sample of $\mathrm{Ba}_{2} \mathrm{CaMoO}_{6}$ from Dr A. W. Sleight (Du Pont Experimental Station, Wilmington, Delaware). Of the many compounds at our disposal which incorporated 'octahedral' MoO_{6} moieties, the $\mathrm{Ba} / \mathrm{Ca}$ molybdate is the only one in which the O atoms occupy the corners of regular octahedra; in all the others the octahedra are grossly distorted. The reported structure of $\mathrm{Ba}_{2} \mathrm{CaMoO}_{6}$ is based on the similarity of its X -ray powder diffraction pattern to those of a series of homologous tungstates and molybdates (pseudocubic). analyzed by Steward \& Rooksby (1951). They reported a value for the cubic cell dimension ($8.335 \AA$), and stated that no detectable deformation from cubic symmetry is apparent in the molybdate. However, no value for the Mo-O distance could be derived other than one based on an estimate of the structure parameter $(u=0.23)$ for $\mathrm{Ba}_{2} \mathrm{CaWO}_{6}$. If this is accepted for the molybdate, then $(\mathrm{Mo}-\mathrm{O}) \approx 1.92 \AA$. In $\mathrm{Ba}_{2} \mathrm{NdMoO}_{6}$ the quoted value is $1.86 \AA$ (Brandle \& Steinfink, 1971).

Discussion. The X-ray absorption data we recorded at the CHESS facility confirm that in $\mathrm{Ba}_{2} \mathrm{CaMoO}_{6}$ the octahedra are regular, and we are able to determine directly the magnitude of the Mo-O distance. The first conclusion follows from the shape of the near-edge

0108-2701/84/101646-02\$01.50
spectrum, recorded at $1 \mathrm{eV}\left(1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}\right)$ intervals in the vicinity of the K edge of Mo. Refer to Fig. 1 for comparison of the absorption functions for MoS_{2} (regular octahedra of S atoms around the Mo atoms) (Takeuchi \& Nowacki, 1964), $\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{pq})_{2}$ (typical for distorted octahedra of oxygens) (Pierpont \& Buchanan, 1976), $\mathrm{K}_{2} \mathrm{MoO}_{4}$ (regular tetrahedra) (Gatehouse \& Leverett, 1969), and for $\mathrm{Ba}_{2} \mathrm{CaMoO}_{6}$. For the tetrahedral and distorted octahedral structures these curves have been resolved into three overlapping Gaussian distributions (as indicated), after the $\{\mu(E) . x\}$ values were normalized by dividing them by the magnitude of the total jump from the pre-edge level to the background level, extrapolated from the high-energy side. The assignment sequence for the resolved Gaussian distributions is based on a pseudo-atomic model: $1 s \rightarrow 4 d$: $1 s \rightarrow 5 s ; 1 s \rightarrow 5 p$ (Shulman, Yafet. Eisenberger \& Blumberg, 1976). The first transition is dipole forbidden in spherical or regular octahedral symmetry. but the selection rule breaks down when the octahedra are distorted. In Fig. 1, the relative areas for $\mathrm{K}_{2} \mathrm{MoO}_{4}$ are $A_{1}=16: A_{2}=25 ; A_{3}=360$ and for $\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{pq})_{2}$. $A_{1}=14: A_{2}=29: A_{3}=353$, whereas for $\mathrm{Ba}_{2} \mathrm{CaMoO}_{6}$ they are $A_{1}=0 ; A_{2}=8 ; A_{3}=155$, and for MoS_{2}. $A_{1}=0 ; A_{2}=33 ; A_{3}=308$. A detailed analysis is presented by Chiu, Bauer \& Johnson (1984).

A value for the Mo-O distance was derived from a Fourier transform of EXAFS spectra. Fig. 2. $\mathrm{K}_{2} \mathrm{MoO}_{4}$ was used for the reference species; it incorporates regular tetrahedra of O atoms about the Mo atoms. and thus calibrates the phase-shift correction in the first coordination shell. We previously checked the validity of this procedure for known structures with distorted MoO_{6} octahedra (Chiu et al., 1984). Thus in $\mathrm{Ba}_{2} \mathrm{CaMoO}_{6}$. $(\mathrm{Mo}-\mathrm{O})=1.86 \pm 0.02 \AA$, which is in general agreement with the proposed value for the u parameter $(0 \cdot 223)$. The second peak in the radial distribution curve is due to an unresolved superposition

[^0]of $\mathrm{Mo}-\mathrm{Ca}$ and $\mathrm{Mo}-\mathrm{Ba}$ contributions. It is located at $3.83 \AA$, assuming a phase shift of 0.35 . The Mo-Mo peak in MoS_{2} was used to calibrate the phase-shift correction for the second coordination shell. Values derived for $a=8.335 \AA$, for the space group $F m 3 m$ $\left(O_{h}^{5}\right)$ give $3.62 \AA$ for ($\mathrm{Mo}-\mathrm{Ba}$) and $4.18 \AA$ for (Mo-Ca). The third peak was assigned to Mo-Mo, which when shifted by $0.35 \AA$ appears at $5.9 \AA$, in agreement with the powder diffraction data.

Fig. 1. Near-edge absorption spectra with resolved Gaussian distributions: (a) $\mathrm{Mo}_{2} \mathrm{O}_{5}(\mathrm{pq})_{2}$; (b) MoS_{2}; (c) $\mathrm{Ba}_{2} \mathrm{CaMoO}_{6}$; (d) $\mathrm{K}_{2} \mathrm{MoO}_{4}$. The solid curves are observed values; the points (0) are the calculated sums of the resolved Gaussian distributions (dotted lines).

(c)

Fig. 2. Radial distribution curves (prior to phase-shift correction and rectification by R^{2}): (a) $\mathrm{K}_{2} \mathrm{MoO}_{4}$; (b) MoS_{2}; (c) $\mathrm{Ba}_{2} \mathrm{CaMoO}_{6}$. The intensity unit is arbitrary but all graphs are on the same scale.

This work was supported by the National Science Foundation under an Industry/University Collaborative Research Program, Grant No. CPE-8000025. The EXAFS spectra were recorded at the Cornell High Energy Synchrotron Source supported by NSF Grant No. DMR-780/267. We acknowledge with thanks the calibrating sample furnished by Dr A . W. Sleight and discussions with him of the structure of this interesting compound.

References

Brandle, C. D. \& Steinfink, H. (1971). Inorg. Chem. 10, 922-926.
Chiu, N.-S., Bauer, S. H. \& Johnson, M. F. L. (1984). J. Catal. To be published.
Gatehouse, B. M. \& Leverett, P. (1969). J. Chem. Soc. A, pp. 849-854.
Pierpont, C. G. \& Buchanan, R. E. (1976). J. Am. Chem. Soc. 97, 6450-6455.
Shulman, R. G., Yafet, Y., Eisenberger, P. \& Blumberg, W. E. (1976). Proc. Natl Acad. Sci.USA, 73, 1384-1388.

Steward, E. G. \& Rooksby, H. P. (1951). Acta Cryst. 4, 503-507.
Takeuchi, U. \& Nowacki, W. (1964). Schweiz. Mineral. Petrogr. Mitt. 44, 105-120.

[^0]: © 1984 International Union of Crystallography

